
Data Modeling Patterns using
Fully Communication Oriented

Information Modeling (FCO-IM)

Fazat Nur Azizah, Guido Bakema

FN.Azizah@han.nl, Guido.Bakema@han.nl
Research and Competence Group Data Architectures & Metadata Management
Informatics and Communication Academy, HAN University of Applied Science

Beverweerdlaan 3, 6825AE Arnhem, The Netherlands.
Phone: +31-26-3658271. Fax: +31-26-3658126.

Abstract. Data modeling patterns is an emerging field of research in the data
modeling area. Its aims are to create a body of knowledge to help understand
data modeling problems better and to create better data models. Current data
modeling patterns are generally discussed at the instance level (only applicable
in a specific domain, e.g. a business situation) and with an Entity-Relationship
Modeling (ERM) way of thinking. This paper discusses data modeling patterns
using the expressive power of Fully Communication Oriented Information
Modeling (FCO-IM), a Dutch fact oriented modeling (FOM) method. We also
consider more abstract higher level data patterns – meta level patterns – and de-
scribe a few basic meta level data modeling patterns in brief as well as a meta
level pattern in content versioning.

1 Introduction

The vast bulk of current work on patterns is carried out in the field of object oriented
applications, but some notable work has been done in the field of data modeling as
well [7, 12]. The importance of data modeling patterns is clear: although data model-
ing is a crucial part of the information systems development life cycle, data modeling
is a rather expensive activity, and it is in general not easy to come up with a good data
model. Patterns can help data modelers to do their job better and so reduce costs.

Most data modeling patterns are described at the instance level; such patterns are
applicable only to one particular domain, for example a given business case. It is in-
teresting to investigate patterns from the structure level point of view of data model-
ing itself, instead of related to the content.

Current work on data modeling patterns generally employs Entity Relationship
Modeling (ERM) for presenting patterns, not only as the means of describing the pro-
posed data models, but also for discussing the way of thinking behind them. In the
fact oriented data modeling community however, patterns are hardly discussed yet, al-
though Fact Oriented Modeling (FOM) techniques provide a promising approach for
dealing with data modeling patterns, because of their different way of thinking.

2 Patterns

Generally speaking, people try to recognize patterns to understand the world better
and to use these patterns to their advantage. The need of finding and codifying pat-
terns arises in particular from the wish to reuse existing and proven solutions to par-
ticular recurring problems. This makes it an attractive subject, not only for research-
ers, but also for practitioners.

The goal of pattern finding is to create a body of knowledge that helps us to under-
stand and to resolve recurring problems, by documenting insight and knowledge
gained from problem solving experience and by putting these into a shared vocabu-
lary that helps us to exchange these solutions and the lessons learned from them.

2.1 Definition

A widely accepted scientific definition reveals a pattern as a proven solution to a
problem in a context [2]. This definition is derived from one given by Christopher
Alexander1: “each pattern is a three-part rule, which expresses a relation between a
certain context, a problem, and a solution.” [1]. Although others provide slightly dif-
ferent definitions, this one seems adequate.

So: a pattern is an instruction or a description of a solution to a (recurring) problem
with its goals and constraints, which takes place in a certain context. But it does more
than just describe a solution; it should also explain why the solution is adequate. For
further discussions on this topic, see [2, 3].

2.2 Elements of Patterns

From the definition, the three basic elements of a pattern can already be seen: context,
problem, solution. Several authors describe a few extra properties that should be pre-
sent as well. For details on this subject, see [3]. Despite all differences in formats, the
following essential elements are often mentioned [10]:
1. Name: a meaningful designation to refer to the pattern and the knowledge and

structure it describes.
2. Problem: a statement that describes the intent of the pattern; i.e. the goals and ob-

jectives it wants to reach within the given context.
3. Context: the preconditions under which the problem and its solution seem to occur

and for which the solution is desirable.
4. Solution: rules describing how to realize the desired outcome, often equivalent to

giving instructions describing how to construct the necessary work products.
5. Examples: one or more sample applications which illustrate: a specific initial con-

text; how the pattern is applied to it and transforms it, and the resulting context.

1 Christopher Alexander, a physical architect, is known for his writings on patterns in urban

planning and building architecture. His writings influenced people from other fields, includ-
ing software engineers.

3 Data Modeling Patterns

Ever since the data modeling area was established by its founding fathers, such as
Edward Codd, Peter Chen, Sjir Nijssen and others, data modeling has played a crucial
role in the development life cycle of software and information systems. Data model-
ing methods, such as ERM and FOM, were invented to master the vast amount of data
owned by organizations and to derive physical data models to store, retrieve and ma-
nipulate these data efficiently. With the increasing number of data models created to
solve various types of problems, data modelers started to think about patterns in these
data models to reuse proven solutions.

The work of David Hay [7] is appreciated by researchers and practitioners in the
software and information systems development area. He composed a collection of
patterns of data models applicable in several business situations that is more or less
accepted as a standard and used in practice. Other researchers refer to him for further
study on patterns in data modeling. Other noteworthy work was done by Silverstone
[12], though this is more a collection of data models, rather than a collection of data
model patterns. In [8], Ralph Kimball provides a useful and often consulted set of (di-
mensional) data models.

3.1 Levels of Data Modeling Patterns

The data modeling patterns mentioned above contain specific aspects that often occur
in business applications, such as organization structure, product, manufacturing, and
contract. The patterns are found in solutions to data modeling problems in businesses.
Therefore, these patterns are only suitable for assisting the data modeling process in
these business situations. If someone wants to create a data model for another type of
application, then the patterns will probably not be useful anymore, or perhaps only a
small portion of the patterns can be used for the new situation.

From the perspective of abstraction, such domain specific data modeling patterns
are at the lowest abstraction level. They have a particular domain of application, cer-
tain particular terminologies, and certain particular semantics of objects and relation-
ships. As a pattern, they are at the instance level.

However, when the structure of these instance level patterns is observed more care-
fully, it turns out that a higher abstraction level is sometimes present as well. Such a
kind of pattern shows up in several instance level patterns. For example: the model of
the hierarchy of Geographic Location in David Hay’s People and Organizations pat-
tern is essentially the same as the model of the hierarchy of Activity in his Activities
pattern [7], and it is even similar to the way Martin Fowler modeled his Organization
Structure object oriented pattern [6]. All these hierarchies have a structure in com-
mon, which is simply a cyclic binary homogeneous relationship (i.e: the same entity
type occurs at both ends of a binary relationship type, a structure that is sometimes in-
correctly called recursive).

Such an abstract pattern as this hierarchy showing up three times in different in-
stance level patterns, can be used to build other instance level patterns. Therefore
these abstract patterns are related to a class of problems rather than to one typical con-

tent problem. Hence, they belong to a higher abstraction level than the instance level
patterns. Such patterns are at the meta level.

Above this meta level, there might be an even higher level of abstraction with re-
spect to patterns: the meta meta level patterns. These patterns capture the entire idea
of patterns and provide knowledge about patterns themselves. This constitutes the
most interesting and also the most difficult topic of studying patterns, which we in-
tend to study further in the near future. See figure 1.

Fig. 1. The levels of patterns.

Figure 1 also depicts the level of complexity of data model patterns, which goes in the
opposite direction of the level of abstraction. This means that the higher the level of
abstraction is, the simpler the pattern becomes, and vice versa. This conveys the prin-
ciple of pattern generativity [3], which succinctly states: a complexer pattern is built
from simpler patterns.

In the following sections of this article, the full emphasis is on meta level patterns.

3.2 Data Modeling Patterns in FOM

The primary focus of defining patterns is not so much on technology, but on higher
level descriptions. Choosing an appropriate methodology is not about creating dia-
grams that express how the data is represented or stored. Especially with respect to
data modeling patterns, the methodology should not only provide a way of modeling,
but primarily a way of thinking in viewing a problem and a way of communicating
ideas for problem solving among analysts and domain experts.

The ERM approach, the most popular approach to data modeling and describing
data modeling patterns, considers the Universe of Discourse (UoD) as a collection of
entities having relationships which each other. In a similar fashion, an Object Ori-
ented Modeling (OOM) approach2 sees the UoD as a collection of objects interacting

2 Although formally the Object Oriented Modeling approach is not a data modeling technique,

some parts of it are commonly used for data modeling; e.g. class diagrams in UML.

Instance level
patterns

Meta level
patterns

Meta meta level
patterns

Level of
abstraction

high

low

Level of
complexity

complex

simple

with each other. FOM approaches consider the UoD to be described by a set of de-
clarative facts. These different approaches provide different ways of looking at pat-
terns.

In the FOM community, not much discussion has taken place till now about data
modeling patterns. A FOM approach offers several valuable things for finding and de-
scribing patterns. Firstly, it provides a more detailed way, even at an atomic level, of
looking at things, because it analyzes elementary facts instead of grouped facts in the
form of entities or objects. This provides an advantage in examining the problem from
the most basic level. Secondly, a FOM approach has a higher level of conceptuality
compared with the ERM or OOM approaches. It is closer to the user world by provid-
ing a better way of communication. Finally, some FOM methods, such as FCO-IM,
offer the possibility of using powerful modeling constructs such as generalization and
recursive identification [5], providing a broader opportunity for pattern application. In
[4] a complex example of recursive identification is discussed. FCO-IM consistently
presents all of the power of fact oriented data modeling mentioned above.

3.3 Quality of Data Modeling Patterns

Patterns in data modeling are found from perhaps hundreds of different solutions to a
particular problem, designed by different data modelers. It is possible that all these so-
lutions correctly capture the user requirements. Nevertheless, not all of these solutions
have the quality to be considered as good data models. So, it is desirable to be able to
select a qualitatively good solution to a particular problem given a certain context. Af-
ter all, the goal of data modeling patterns is to help information modelers to create
better data models. So, we have to define criteria for good data modeling patterns.

Some experts list which qualities should be present in a good pattern [3, 9]. How-
ever, it is Christopher Alexander who has described a stunning definition of quality
that he called the ‘Quality Without A Name’ (QWAN). This quality imparts incom-
municable beauty and immeasurable value to a structure. Alexander proposes the ex-
istence of an objective quality of aesthetic beauty that is universally recognizable [3].

Nevertheless it seems desirable to define more precisely which qualities a data
modeling pattern should possess. No author has written about quality of data model-
ing patterns3. Not much has been written about the quality of data models either, apart
from models (using ERM) produced by students in simple and contrived exercises.

Still, there are some useful works. Graeme Simsion provides ten quality factors for
data models [13]. Some of these quality factors may be applicable to patterns as well;
for example non-redundancy4 (which is more or less automatically assured when a
FOM method, like FCO-IM, is used). Another quality factor might be the key factor
for determining the QWAN for data modeling patterns: elegance. Elegance is a hard
concept to pin down, but most data modelers will admit to experience an “aha!” mo-
ment, when a data model seems to be particularly neat. The concept of elegance is as-
sociated with consistency, conciseness and comprehensiveness. A few criteria that
may be useful for measuring the elegance of a data model:

3 In [5] David Hay speaks about drawing up a good data model, but he does not mention any-

thing about the quality of data model patterns itself.
4 FOM methods, when employed properly, guarantee 5NF data models.

1. Syntactic, semantic, and positional standards
A standard style of defining the data model leads to a more consistent data model,
by consequently using standards of syntax, semantics, and position.

2. Size of a data model
In general: the smaller the data model for a given UoD, the more concise it is. In
FCO-IM terms: the fewer elementary fact types (either nominalized or not nomi-
nalized), the better the model; and for each fact type: the fewer roles , the better.

3. Abstraction level of a data model
Conciseness of data models can be achieved by putting more general (higher level
of abstraction) structures in the data model. General structures can also improve
the level of comprehensiveness. More abstract data models might also be reuseable
in broader contexts. But introducing abstraction must be done in a controlled way,
because overabstraction could lead to the contrary: loss of comprehensiveness,
apart from difficulties with respect to the implementation,.

4. Completeness of a data model
The data model must cover all aspects of the UoD that should be modeled. This
should not be sacrificed for the sake of conciseness.

In the end, the pursuit of an equilibrium among these aspects is the most important
factor for defining the elegance of a data model as well as a data model pattern.

4 Meta Level Data Modeling Patterns

Finding a good pattern is a difficult task. However, the principle of generativity of
patterns gives us a clue on how to find patterns. This principle states that patterns are
built from building blocks that are also patterns; a procedure which ends with the
most basic building blocks. In the case of meta level data modeling patterns these ba-
sic building blocks can be determined from the smallest recurring structures that can
be used to build larger building blocks. From the level of complexity of the pattern
point of view, this provides a bottom up approach in finding larger meta level data
modeling patterns.

However, since meta level patterns can be found from the study of instance level
patterns, a top down approach can also be employed by studying several instance
level patterns, or even by studying cases in which no pattern has been defined before,
that possess similar structures. These similar structures can be abstracted into the meta
level patterns.

4.1 Basic Meta Level Data Modeling Patterns

The basic meta level data modeling patterns provide the highest level of abstraction of
the meta level data modeling patterns. From the point of view of complexity, they
could be the simplest ones however. They provide the basic pattern structures that can
be employed by other meta and instance level patterns.

There are several basic constructs in FCO-IM that can serve as basic meta level
patterns. Some of them are:

1. Semantically Equivalent Transformation Patterns (e.g. object to fact type transfor-
mation, nominalization, and specialization/subtyping).

2. Generalization Patterns (e.g. generalization with synonymy, generalization with
homonymy, and recursive identification).

The full description of all these constructs can be found in [5], including denormaliza-
tion, handling exception cases, etc.

4.2 A Pattern in Content Versioning

This section discusses a pattern in cases with content versioning. It is an example of a
meta level pattern derived from instance level patterns and cases. The meta level case
is about the management of the content of documents that undergo versioning, i.e. the
history of revisions on the document must be recorded. This can occur in many fields,
from legislation to manufacturing industry. Consequently, it is a useful pattern. Two
cases have been studied:

Legislation5. This case reflects the management of revisions of laws. The case –
coming from the principle that every citizen must have access to laws – asks for a
repository for laws and their successive versions.

A volume of laws consists of several parts. These parts contain chapters and chap-
ters contain sections. Each section consists of articles. Each of these elements can be
subjected to revision. For example, revision may occur at the article level, in which
case the version of the section (the next higher level) does not change, just the version
of the article in question. But it can also occur that a whole law changes, which leads
to a different version of the entire law.

Each revision must be in one of the following states: draft, review, approved, or
historical. The content of each revision is stored in an XML file.

Bill of Materials6. The bill of materials case is related to the planning and assembling
of products in manufacturing processes. Each product comprises several components
(which are also products). When a product is ordered, it means that its components
must be ordered. Each of these components may consist of several other components
which must be ordered as well then.

Revision may take place at every level of hierarchy. This revision may be in one of
at least two statuses: current or historical. For each level of the bill of materials, the
quantity ordered is recorded, and some other attributes.

Both cases deal with versioning / revision of objects. Each revision may have several
attributes; an attribute in common is the state of the revision. Both cases deal with
compound objects, i.e. objects that are composed of one or more elements. In the leg-
islation case, it is the law document that possesses the hierarchical structure of a docu-

5 This case is a simplified version of a case used in an Enterprise Content Management course

in the study program Master of Information Systems Development of HAN University.
6 For a more detailed description of the bill of materials case, see for example

http://www.ciras.iastate.edu/publications/CIRASNews/fall97/bom.html.

ment; in the bill of materials case, it is the bill of materials that may consist of several
levels of components.

The following description can be made for the pattern found in these content ver-
sioning cases:
1. Name: Content Versioning Pattern
2. Problem: Create a data model for a structure that deals with an object that may

have several versions due to revision acts. The object may be a compound object
i.e. an object that is composed of one or more elements that may be compound as
well. In the case of a compound object, each of the elements may be subjected to
revision.

3. Context: No particular context is required.
4. Solution: Data modelers can think of several ways of modeling this. The following

proposed solution is (with some adaptation and simplification) based on a data
model that was created in practice for the legislation case. We chose this data
model because of its simplicity in solving a relatively complex problem. It models
the compound objects as a single object type (even though it requires a new way of
identifying the elements of the compound object type), showing a high level of ab-
straction in the understanding of the compound object.

The general solution is shown in figure 2. Revision is an object type, i.e. a
nominalized fact type, with two roles; one role played by ‘revision code’, the other
played by an object type Element, which represents the compoundness of objects.
Each element has a level that indicates the position of the element within the hier-
archy of the compound object. For example: in the law document case it can be ar-
ticle or section or chapter, whereas in the bill of materials case a level is usually
indicated by a positive integer (1, 2, 3, etc.). The hierarchy itself is modeled by de-
fining the parent of an element (which is itself also an element). For example: in
the law document, element 11 which is an article can have element 10 as its parent,
which is a section.

Element and Revision can have their own attributes, which are depicted as extra
fact types played by the respective object types. These attributes are defined ac-
cording to the situation in which the pattern is implemented.

5. Example: The application of the pattern for the legislation problem is shown in fig-
ure 3. To cut the discussion short, only the data model solution is given. In this
data model, the general construct is the same as the general solution of the pattern.
The differences lie in the attribute fact types played by Revision and Element.

5 Conclusion and Future Work

Although still in a very preliminary stage, the result of this study gives a promising
prospect of finding more meta level data modeling patterns. However, finding and
writing a pattern is not an easy task and feedback from other parties is required.

The difficulty in defining meta level patterns lies in two aspects:
• understanding deeply the underlying structure;
• choosing the best solution out of all existing proven solutions.

Fig. 2. General FCO-IM data model solution for the Content Versioning Pattern

Fig. 3. Data model for legislation problem based on the Content Versioning Pattern

Even in the simple case of the content versioning pattern, these difficulties are pre-
sent. Therefore, it is important to study quality criteria for data modeling patterns fur-
ther and to find proper criteria for measuring the quality of patterns. Nevertheless, in

22

3

2
1

F10 : "T here is element <3>."
O1 : 'element <3>'

2

1:
2:

Element

3

2
1

3

2
1

3
F10 : "T here is element <3>."
O1 : 'element <3>'

22

1:
2:

2
1

Element

element codee lement code
17

article

F13 : "There is a level called
<17>."

O5 : 'level <17>'

5

1:

Leve l

17

article

17

article

17
F13 : "There is a level called

<17>."
O5 : 'level <17>'

55

1: article

Leve l

leve l codeleve l code

18

2

19

1
F7 : "<18> has parent <19>."

8

1:

Parent of Element

18

2

19

1

18

2

18 19

1

19
F7 : "<18> has parent <19>."

88

1: 2 1

Parent of Element

1

10

2

2

F1 : "Revision <1> of <2> exists."
O6 : 'revision <1> of <2>'

1

1:

Revision

1

10

2

2

1

10

1 2

2

2
F1 : "Revision <1> of <2> exists."
O6 : 'revision <1> of <2>'

11

1: 10 2

Revision

XML content descXML content desc revision coderevision code

22

draft

F12 : "There is a revision
state <22>."

O7 : 'state <22>'

3

1:

Revision State

22

draft

22

draft

22
F12 : "There is a revision

state <22>."
O7 : 'state <22>'

33

1: draft

Revision State

revision state namerevision state name

21

draft

20

10,2
F8 : "<20> has <21>."

10

1:

State of Revision

21

draft

20

10,2

21

draft

21 20

10,2

20
F8 : "<20> has <21>."

1010

1: draft 10,2

State of Revision

25

xml2.xml
O8 : 'xml content <25>'

4

1:

XML Content

25

xml2.xml

25

xml2.xml

25
O8 : 'xml content <25>'

44

1: xml2.xml

XML Content

24

xml2.xml

23

10,2
F9 : "<23> has <24>."

11

1:

XML Content of Revision

24

xml2.xml

23

10,2

24

xml2.xml

24 23

10,2

23
F9 : "<23> has <24>."

1111

1: xml2.xml 10,2

XML Content of Revision

15

2

16

artic le
F6 : "<15> has <16>."

7

1:

Level of Element

15

2

16

artic le

15

2

15 16

artic le

16
F6 : "<15> has <16>."

77

1: 2 artic le

Level of Element

O1
O1

O1
O6

1

O7

O6O83

O1

4

O5

1

3

4

22

12

2

13

XX
F5 : "<12> has <13>."

9

1:

Attribute of Eleme nt

12

2

13

XX

12

2

12 13

XX

13
F5 : "<12> has <13>."

99

1: 2 XX

Attribute of Eleme nt

24

YYYY

23

10,2
F9 : "<23> has <24>."

11

1:

Attribute of Revision

24

YYYY

23

10,2

24

YYYY

24 23

10,2

23
F9 : "<23> has <24>."

1111

1: YYYY 10,2

Attribute of Revision

3

2
1

F10 : "There is element <3>."
O1 : 'element <3>'

2

1:
2:

Eleme nt

3

2
1

3

2
1

3
F10 : "There is element <3>."
O1 : 'element <3>'

22

1:
2:

2
1

Eleme nt

14

XX
O4 : 'element attribute <14>'

6

1:

Element Attribute

14

XX

14

XX

14
O4 : 'element attribute <14>'

66

1: XX

Element Attribute

element attribute codeelement attribute code

element codeelement code
17

AAA

5

1:

Level

F11 : "There is a level called
<17>."

O5 : 'level <17>'

17

AAA

17

AAA

17
55

1: AAA

Level

level codelevel code

15

2

16

AAA
F6 : "<15> has <16>."

7

1:

Level of Element

15

2

16

AAA

15

2

15 16

AAA

16
F6 : "<15> has <16>."

77

1: 2 AAA

Level of Element

18

2

19

1
F7 : "<18> has parent <19>."

8

1:

Parent of Element

18

2

19

1

18

2

18 19

1

19
F7 : "<18> has parent <19>."

88

1: 2 1

Parent of Element

1

10

2

2

F1 : "Revision <1> of <2> exists."
O6 : 'revis ion <1> of <2>'

1

1:

Revision

1

10

2

2

1

10

1 2

2

2
F1 : "Revision <1> of <2> exists."
O6 : 'revis ion <1> of <2>'

11

1: 10 2

Revision

25

YYYY
O8 : 'revis ion attribute <25>'

4

1:

Revision Attribute

25

YYYY

25

YYYY

25
O8 : 'revis ion attribute <25>'

44

1: YYYY

Revision Attribute

revision attribute coderevision attribute code

revision coderevision code
22

draft

3

1:

Revision State

F12 : "There is a revision
state <22>."

O7 : 'state <22>'

22

draft

22

draft

22
33

1: draft

Revision State

revision state namerevision state name

21

draft

20

10,2
F8 : "<20> has <21>."

10

1:

State of Revision

21

draft

20

10,2

21

draft

21 20

10,2

20
F8 : "<20> has <21>."

1010

1: draft 10,2

State of Revision

O1

O4

O1

3

O5

O1
O1

O6

O1

O8

O6

1

O7

F11 : "There is a level called
<17>."

O5 : 'level <17>'

F12 : "There is a revision
state <22>."

O7 : 'state <22>'

3

1

cases that have the same structure as the content versioning pattern, this solution can
be reused, with a little adaptation perhaps.

The use of a FOM method, such as FCO-IM, provides a more detailed and yet
more conceptual view: the real structure of the solution of the pattern can be captured
properly. It is not very difficult to adapt the described pattern to a new situation that
contains the same type of structure. FCO-IM provides also the advantage of describ-
ing some basic meta level patterns, such as generalization and recursive identification,
that prove to be powerful meta level patterns [4, 11].

We would like to underline the concept of levels of patterns. With more data mod-
els created for a wide range of areas, it is essential to acquire a broader view on
patterns. This does not mean that instance level patterns are not useful, but meta level
patterns will provide a more consistent way for describing patterns. This will help to
create a comprehensive body of knowledge of data modeling patterns.

Further study is needed to investigate the role of meta meta level patterns, based on
the hypothesis that meta meta level patterns will provide a powerful way for defining
the concept of pattern description.

Acknowledgement. Jan Pieter Zwart is gratefully acknowledged for reviewing the
phrasing in this paper.

References

1 Alexander, C.: The Timeless Way of Building, Oxford University Press, USA, 1979.
2 A Pattern Definition, http://hillside.net/patternsdefinition.html, downloaded at 19/04/2006.
3 Appleton, B: Pattern and Software: Essential Concepts and Terminology,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html, downloaded at 19/04/2006.
4 Azizah, F.N: A Case Study of Recursive Data Modeling, Libyan First International Sympo-

sium on Information Systems Modeling and Development, working papers, Tripoli, Libya,
2006.

5 Bakema, Guido; Zwart, Jan Pieter; Lek, Harm van der: Fully Communication Oriented In-
formation Modeling (FCO-IM), 2002. The book can be downloaded for free from
http://www.casetalk.com/php/index.php?FCO-IM%20English%20Book.

6 Fowler, M.: Patterns in Enterprise Software, http://www.martinfowler.com/arti-
cles/enterprisePatterns.html, downloaded 19/04/2006.

7 Hay, D.C.: Data Model Patterns, Dorset House Publishing, New York, 1996.
8 Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional

Modeling, John Wiley & Sons, 2nd Edition 2002.
9 Lea, D: Christopher Alexander: An Introduction for Object-Oriented Designers,

http://g.oswego.edu/dl/ca/ca/ca.html, downloaded at 19/04/2006.
10 Lehti, L., Ruokonen, A.: Foundation of the patterns,

http://www.cs.tut.fi/~kk/webstuff/Foundationofpatterns.pdf, downloaded at 06/07/2006.
11 van der Lek, H.: On the structure of an Information Grammar , NIAM-ISDM 1993 Confer-

ence, Working Papers, Utrecht (1993).
12 Silverstone, L.: The Data Model Resource Book: Revised Edition, Volume 1 and 2, John

Wiley & Sons, Inc., 2001.
13 Simsion, G: Better Data Models – Today, Understanding Data Model Quality,

http://www.tdan.com/i034ht01.htm, downloaded at 19/04/2006.

