
A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 1 of 10

A Case Study of Recursive Data Modeling

Fazat Nur Azizah, Guido Bakema, Jan Pieter Zwart
Research and competence group Data Architectures and Metadata Management

Academy for Communication and Information Technology
HAN University of Applied Science, The Netherlands

June 2006

Summary
In the programming area much attention is given to recursion, but this
technique is hardly considered in the data modeling area. This paper
discusses a case study about storing project data of a knowledge-based
application called Quaestor, in which the modeling of a recursive data
structure is the central issue. Data modeling methods such as entity-
relationship modeling or object oriented modeling are not yet equipped
with concepts for dealing with recursive data structures. Some fact
oriented modeling methods however can deal with recursion. In this
case study, Fully Communication Oriented Information Modeling
(FCO-IM) is used to capture the complex identification problem of the
recursive structure of Quaestor project data.

1. Introduction

In the programming area, much attention is given to recursion, but this technique is
hardly discussed in the data modeling area. A recursive structure is a structure defined
in term of itself. For a procedure this means that it contains, within its body, a call to
itself, whereas for a data structure1 this means that its identifier is defined in term of
itself. Many data modeling techniques, for example entity relationship modeling and
object oriented modeling, are not yet equipped with concepts for dealing with
recursive data structures. In entity-relationship modeling some people mistake a
cyclic structure (i.e. a structure in which an entity type is involved in a relationship
with itself) for a recursive structure2.

This paper discusses a case study of modeling project data from a knowledge-based
application called Quaestor, in which a recursive data structure is the central issue.
This case study deals with a complex recursive identification structure. Previously, an
attempt was made to model this structure, but this failed because the data modelers
did not succeed in capturing the essence of the problem. In this case study, the fact
oriented method Fully Communication Oriented Information Modeling (FCO-IM)
was chosen since it has proved in the past to be able to describe complex recursive
structures correctly.

1 The term “data structure” is used here in the sense of the data modeling area, not in the sense of the
programming area. For the definition of “data structure” in the programming area, see for example
http://www.nist.gov/dads/HTML/ recursivstrc.html.
2 See for example http://www.dbmsmag.com/9506d16.html and http://www.utexas.edu/its/windows/
database/datamodeling/dm/schema.html.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 2 of 10

2. Quaestor

Quaestor3 is a knowledge-based application for assembling computational models,
developed by Qnowledge Modeling Technologies, Wageningen, The Netherlands.
The application helps engineers to design their computational models. Quaestor was
developed based on the idea that computational models can be represented and
manipulated as abstract structures that can be assembled from smaller elements
(parameters) and/or model fragments [5].

When using Quaestor, the user starts by creating a knowledge base system (KBS for
short). In a KBS, the user creates all parameters and other elements related to the
domain to be modeled. Based on this KBS, the user can create projects. In a project,
the user can construct computational models and store them. These are called project
data.

With the increasing number of models built with Quaestor, a wish arose to be able to
reuse former project data for building new computational models, to reduce the
development time of new models. As a consequence, it was needed to store and
maintain all project data in a single database that can be accessed by Quaestor and
other applications. The project data are currently stored in a generic format called
telitab format. This telitab format includes recursion, which must be properly covered
by the database of Quaestor project data.

Telitab is the abbreviation of text-list-table, because the format consists of three main
parts: text, list, and table. Telitab is a generic format that is used by Quaestor to
communicate model parameters within itself (for data storage and retrieval functions)
or with satellite applications. An example of a telitab is shown in figure 1.

"Open Water diagram Propeller model xxxx"

4
"D" 7.0
"PDRA" 0.80
"Z" 4.0
"J" 1.000E-01

4 "EthaO" "KQ" "KT" "AeAo"
"1" 0.000E+00 4.388E-02 3.590E-01 0.75
"2" 1.282E-01 4.071E-02 3.281E-01 0.75
"3" 2.519E-01 3.287E-02 2.930E-01 0.75
"4" 3.695E-01 3.833E-02 2.544E-01 0.75
"5" 4.777E-01 2.833E-02 2.126E-01 0.75
"6" 5.703E-01 2.347E-02 1.682E-01 0.75
"7" 6.336E-01 1.836E-02 1.218E-01 0.75
"8" 6.301E-01 1.306E-02 7.387E-02 0.75

Figure 1. Example of a telitab

Text (no. 1 in figure 1) is unstructured information without parameters. The
parameters involved in the model are described by means of a number of pairs of a

3 Quaestor was initially developed for the naval company Marin in The Netherlands for assembling and
executing computational models related to ship design. See http://www.qnowledge.nl/.

1 1

2

3

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 3 of 10

parameter name and its value, also called a Parameter Value Combination (PVC).
The PVC’s are written in a list (no. 2 in figure 1). Names of parameters are placed in
quotation marks, followed by the value of the parameters. In a table (no. 3 in figure 1),
the columns represent a set of parameters. Each entry in the table represents one PVC.
Each row in the table represents one case of each set of PVC’s. Each case is identified
by a number (in the leftmost column).

3. The Project Data Analysis4

Along with the development of the database for storing Quaestor project data, a
functionality to export telitab format to XML format has been added to the latest
version of Quaestor. The general scheme of the XML transformation of a telitab
structure of a Quaestor project data is shown in figure 2. Note that there is some
additional information in the XML file that is not present in the original telitab
structure shown in figure 1. This information is related to properties of parameters
involved in the telitab, and of the telitab itself as well.

The XML file that stores the Questor project data is the source of input data for the
database of Quaestor project data. Therefore, this file became the main basis for the
analysis of the database, along with the study of the original telitab format, other
additional documentations and interviews with domain experts.

Since all project data are created based on a KBS, information about this KBS must
be stored as well. A KBS is identified by its name5. In a KBS, several parameters are
defined. Each parameter has a name. Since the same parameter name can appear in
different KBS’s, a parameter is identified by the combination of its name and the KBS
that contains it. Each parameter has properties: class, address, data, dimension, input,
properties, and reference (see no. 2 in figure 2).

Based on the KBS, the user can create one or more projects, which are identified by
the combination of the project name and the KBS name. Each project is stored in a
telitab. A telitab that contains a whole project is the highest level telitab, also known
as the primary telitab (see no. 1 in figure 2). A telitab is identified by its name and the
project it belongs to. In the case of a primary telitab, this name is usually – not always
– the same as the name of the project.

Each project can use the parameters defined in the respective KBS. A parameter that
is applied in a project is addressed as a project parameter to distinguish it from the
parameters of a KBS. A telitab consists of one or more project parameters. Therefore,
a project parameter is identified by the combination of the identifier of the parameter
it corresponds to and the identifier of the telitab that contains the parameter.

4 This description is an adaptation from its original version in [1] chapter 4.
5 The name of a KBS is not present in the XML document containing the project data. It is found in the
file name of the XML file. This file name is designed to contain the name of the KBS as well as of the
project in this format: <KBS-name>.<project-name>.xml.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 4 of 10

<telitab>
 <name> ... </name>
 <parameters>
 <parameterDef>
 <name> ... </name>
 <qclass> ... </qclass>
 <adr> ... </adr>
 <data ... </data>
 <dim> ... </dim>
 <inp> ... </inp>
 <prop> ... </prop>
 <ref> ... </ref>
 </parameterDef>
 <parameterDef> ... </parameterDef>
 ...
 </parameters>
 <text> ... </text>
 <list>
 <parameter>
 <name> ... </name>
 <val>
 <status> ... </status>
 <bln> ... </bln>
 <det> ... </det>
 <req> ... </req>
 <str> ... </str>
 <num> ... </num>
 <telitab> ... </telitab>
 </val>
 </parameter>
 <parameter> ... </parameter>
 ...
 </list>
 <table>
 <qcase>
 <parameter>
 <name> ... </name>
 <val>
 <status> ... </status>
 <bln> ... </bln>
 <det> ... </det>
 <req> ... </req>
 <str> ... </str>
 <num> ... </num>
 <telitab> ... </telitab>
 </val>
 </parameter>
 <parameter> ... </parameter>
 ...
 </qcase>
 <qcase> ... </qcase>
 ...
 </table>
</telitab>
Figure 2. General scheme of XML file containing telitab structure

A project parameter must have a value assigned to it. This value can either be simple
or compound. In a telitab, simple values are stored in a list, whereas compound values
are stored in an n-x-m table (n the number of project parameters involved in the table
and m is the maximum number of cases). Therefore, the case number is a part of the
identifier of an individual value of a project parameter in a table. Each project
parameter value has several properties (see no. 4 in figure 3): status, boolean value,
address of parameter which determines the value, and address of parameter that
requires the value. The value itself can be either a string, a numeric value, or a telitab.
If the value of a project parameter is a telitab, then a lower level telitab is present,
which has exactly the same structure as the higher level one,. This lower level telitab
can contain project parameters applied in other telitabs of the same project.

2

4

3

1

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 5 of 10

A lower level telitab is identified by its name and the project parameter that contains
it as a value. The name of such a lower level telitab is usually the same as the name of
the parameter.

A telitab also has a text part which describes any additional information related to it
(see no. 3 in figure 2).

Modeling information about a KBS and its parameters is not difficult, since the above
description provides clear information. The same holds for a project. The main
problem in modeling Quaestor project data lies in the modeling of telitabs and their
project parameters. At least two approaches came up to solve the problem:

1. Emphasis on the structure of the telitab
The first idea is to model the structure of the telitab as it is described. So, a
telitab contains several project parameters and each project parameter has
values which can be a numeric value, a string, or another telitab.

2. Emphasis on the structure of the project parameters

If the telitab format is seen just as a kind of container for the project
parameters, it is clear that the structure of the hierarchy of the project
parameters is a tree. A telitab can then be understood as an encapsulation of
the value of a project or a project parameter. The root of the tree is the project,
followed by nodes which are the project parameters (see figure 3).

Figure 3. Tree structure of a project and its project parameters

The second idea seems preferable because there is no need to store the telitabs
explicitly. The telitab format is just considered as a means of storing the hierarchical
relationships between the project parameters. If in future telitabs would be replaced
by another way of storing this hierarchy, then the data model would be independent of
such a change. However, this approach was rejected for three reasons. Firstly: there
are at least two properties related to telitabs only: name and text. Secondly: we
wanted to respect the preference of domain experts who are used to deal with their
models in a telitab way of thinking. Finally, it is not likely in the near future that the
telitab format will be replaced by another format. Therefore, we chose the first
approach, and our further discussion focuses on this.

Project Mvr.14962

Mvr.MODELS Mvr.PROGRAM …

Mvr.CFKT Mvr.ALLTESTNO
Case 1

Mvr.ALLTESTNO
Case 2 …

…

… … …

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 6 of 10

Both approaches however involve recursive structures. In the first approach, a telitab
contains several project parameters and a project parameter can have a telitab as its
value. In the second approach, the recursion appears in the structure of the hierarchy
of the project parameters.

In the context of data modeling, recursion can be understood as a special case of
generalization (see [3]). A typical problem related to generalization is different ways
of identifying different objects of the same type. As discussed before, every telitab is
identified by one of two following ways:

- in the case of a primary telitab, it is identified by its name and the project it
belongs to (a project is identified by a project name and a KBS name).

- in the case of lower level telitabs, it is identified by its name and the project
parameter it is a part of (a project parameter is identified by the parameter it
corresponds with and the telitab the project parameter belongs to).

Things are even more complex because there are two types of project parameters: the
ones that are stored in a list and the ones that are stored in a table. Only a value stored
in a table needs a case number as part of its identifier. So there are two subtypes of
project parameter, and each subtype can contribute in the identifier of a telitab.
Therefore, apart from recursion and generalization, also specialization (or subtyping,
see [3]) is involved.

This complex identification problem cannot be modeled using an entity relationship
or object oriented approach, because these approaches do not support recursion and
generalization. UML (an object oriented method) uses the term generalization where
specialization is actually meant. At the moment, only the fact oriented modeling
methods FCO-IM [2][3] and PSM [6] support recursive identification structures and
distinguish properly between generalization and specialization. For this case study
FCO-IM (Fully Communication Oriented Information Modeling) was chosen because
FCO-IM is supported by a modeling tool6, whereas PSM yet is not. Moreover FCO-
IM has repeatedly proved to be able to model complex recursive structures in
operational practice [2].

FCO-IM modeling starts with verbalizing facts. These verbalizations are then further
analyzed, resulting in a conceptual data model. This model can then be automatically
converted to a logical model (entity-relationship model or class diagram of UML)
and/or to a physical model (relational model) [3].

In the Quaestor case study, verbalizing all types of facts helped to survey all problems
with respect to identification. Table 1 provides some examples of verbalizations of a
KBS, parameters, a project, telitabs, and project parameters.

In the examples of verbalizations of telitabs and project parameters, the recursion is
clearly visible. Take for example verbalizations 8 and 9 in table 1. These examples
refer to telitabs that are identified by their names and the project parameters that have
them as their values.

6 See for the FCO-IM modeling tool CaseTalk: www.CaseTalk.com.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 7 of 10

Table 1. Examples of verbalizations
 [KBS]
1 "There is a knowledge-based system Mvr."
 [Parameter]
2
3
4
5

"There is parameter ALF in knowledge-based system Mvr."
"There is parameter MODELS in knowledge-based system Mvr."
"There is parameter X in knowledge-based system Mvr."
"There is parameter Y in knowledge-based system Mvr."

 [Project]
6 "Project 14962 in knowledge-based system Mvr exists."
 [Telitab]
7
8

9

"Telitab 14962 of project Mvr.14962 exists."
"Telitab MODELS of parameter Mvr.MODELS in telitab 14962 of
project Mvr.14962 exists."
"Telitab X of case 1 of parameter Mvr.X in telitab MODELS of
parameter Mvr.MODELS in telitab 14962 of project Mvr.14962
exists."

 [Project Parameter]
10

11

12

"Parameter Mvr.MODELS in telitab 14962 of project Mvr.14962
exists."
"Parameter Mvr.ALF in telitab MODELS of parameter Mvr.MODELS in
telitab 14962 of project Mvr.14962 exists."
"Parameter Mvr.Y in telitab X of case 1 of parameter Mvr.X in
telitab MODELS of parameter Mvr.MODELS in telitab 14962 of
project Mvr.14962 exists."

The project parameter in example 8 is stored in a list since it has no case number as a
part of its identification.
"Telitab MODELS of parameter Mvr.MODELS in telitab 14962 in project"
 Telitab Name Project Parameter

The Project Parameter part of this example contains another telitab, making its
identifier recursive:
"... parameter Mvr.MODELS in telitab 14962 in project Mvr.14962 "
 Parameter Telitab

The Project Parameter part in example no. 9 is stored in a table since its identification
requires a case number.
"Telitab X of case 1 of parameter Mvr. X of telitab MODELS of"
 Telitab Name Project Parameter Case

The Project Parameter Case part of this example contains a project parameter that is a
part of another telitab, making its identifier recursive.

From these examples, it is clear that verbalizations 8 and 9 are recursive. The same
holds for verbalizations of project parameters in examples 10-12.

4. The Conceptual Data Model

The relevant part of the FCO-IM conceptual model for the Quaestor project data is
shown in figure 4. It contains the central object types KBS, Project, Telitab,
Parameter, Project Parameter Case and Project Parameter, which has two subtypes:
Project Parameter in List and Project Parameter in Table.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 8 of 10

To highlight only the essential part, many constraints are not shown, apart from
uniqueness constraints (depicted by horizontal double pointed arrows), which are vital
for identification. One totality constraint (depicted by a large dot between the two
subtypes) is included as well to make clear that every instance of Project Parameter
must be either a Project Parameter in List or a Project Parameter in Table.

The three uniqueness constraints of object type Telitab in figure 4 indicate the
generalized identification structure: there are three different ways to identify a telitab.
In other words: the primary key of object type Telitab is either (role 6 + role 7) or
(role 6 + role 8) or (role 6 + role 11). Three of the four roles that form the object type
are optional (marked by OP).

KBS nameKBS name

2

ALF
MODELS

X
Y

3

Mvr
Mvr
Mvr
Mvr

F2 : "There is parameter <2> in <3>."
O5 : 'parameter <3>.<2>'

1:
2:
3:
4:

Parameter
2

2

ALF
MODELS

X
Y

3

Mvr
Mvr
Mvr
Mvr

2

ALF
MODELS

X
Y

2 3

Mvr
Mvr
Mvr
Mvr

3
F2 : "There is parameter <2> in <3>."
O5 : 'parameter <3>.<2>'

1:
2:
3:
4:

ALF
MODELS

X
Y

Mvr
Mvr
Mvr
Mvr

Parameter

parameter nameparameter name

4

14962

5

Mvr

F3 : "Project <4> in <5> exists."
O2 : 'project <5>.<4>'

1:

Project
3

4

14962

5

Mvr

4

14962

45

Mvr

5
F3 : "Project <4> in <5> exists."
O2 : 'project <5>.<4>'

1: 14962Mvr

Project

project nameproject name

9

MODELS,Mvr
X,Mvr

ALF,Mvr
Y,Mvr

10

14962,(14962,Mvr),-,-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
X,-,-,(1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)))

Project Parameter

F7 : "<9> in <10> exists."
O4 : '<9> in <10>'

1:
2:
3:
4:

7

9

MODELS,Mvr
X,Mvr

ALF,Mvr
Y,Mvr

10

14962,(14962,Mvr),-,-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
X,-,-,(1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)))

9

MODELS,Mvr
X,Mvr

ALF,Mvr
Y,Mvr

9O5 10

14962,(14962,Mvr),-,-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
X,-,-,(1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)))

10

Project Parameter

telitab nametelitab name

1

Mvr

F1 : "There is a
knowledge-based
system <1>."

O1 : 'knowledge-based
system <1>'

O3 : '<1>'
1:

KBS

1
O1:F3
O3:O2

O1:F2
O3:O5

1

Mvr

1

Mvr

1
F1 : "There is a

knowledge-based
system <1>."

O1 : 'knowledge-based
system <1>'

O3 : '<1>'
1: Mvr

KBS

F7 : "<9> in <10> exists."
O4 : '<9> in <10>'

1:
2:
3:
4:

MODELS,Mvr
X,Mvr

ALF,Mvr
Y,Mvr

14962,(14962,Mvr),-,-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-
X,-,-,(1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)))

case nocase no

11

22

33

77

6

14962
MODELS

X

7
OP

14962,Mvr
-
-

8
OP

-
(MODELS,Mvr),(14962,(14962,Mvr),-,-)

-

11
OP

-
-

1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-))

F4 : "Telitab <6> of <7> exists."
F5 : "Telitab <6> of <8> exists."
F6 : "Telitab <6> of <11> exists."
O6 : 'tel itab <6> of <7>'
O8 : 'tel itab <6> of <8>'
O9 : 'tel itab <6> of <8>'
O10 : 'tel itab <6> of <11>'

6
5
4

1:
2:
3:

Telitab

O6 :F7, O4
O8, O9 :O4
O9, O10:F7

6

14962
MODELS

X

7
OP

14962,Mvr
-
-

8
OP

-
(MODELS,Mvr),(14962,(14962,Mvr),-,-)

-

11
OP

-
-

1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-))

6

14962
MODELS

X

6 7
OP

14962,Mvr
-
-

7
OP

O2

8
OP

-
(MODELS,Mvr),(14962,(14962,Mvr),-,-)

-

8
OP

11
OP

-
-

1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-))

11
OP

F4 : "Telitab <6> of <7> exists."
F5 : "Telitab <6> of <8> exists."
F6 : "Telitab <6> of <11> exists."
O6 : 'tel itab <6> of <7>'
O8 : 'tel itab <6> of <8>'
O9 : 'tel itab <6> of <8>'
O10 : 'tel itab <6> of <11>'

6
5
4
6
5
4

1:
2:
3:

14962
MODELS

X

14962,Mvr
-
-

-
(MODELS,Mvr),(14962,(14962,Mvr),-,-)

-

-
-

1,((X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-))

Telitab

14

(MODELS,Mvr),(14962,(14962,Mvr),-,-)
O12 : '<14>'

9

1:

Project Parameter in List

O12

14

(MODELS,Mvr),(14962,(14962,Mvr),-,-)

14

(MODELS,Mvr),(14962,(14962,Mvr),-,-)

14

O4

O12 : '<14>'

99

1: (MODELS,Mvr),(14962,(14962,Mvr),-,-)

Project Parameter in List

12

1

13

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

O7 : 'case <12> of <13>'
O11 : 'case <12> of <13>'

8

1:

Project Parameter Case

O7 :F6
O11:O10

12

1

13

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

12

1

1213

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

13
O7 : 'case <12> of <13>'
O11 : 'case <12> of <13>'

88

1: 1(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

Project Parameter Case

15

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)
O13 : '<15>'

10

1:

Project Parameter in Table

O13

15

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

15

(X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

15

O4

O13 : '<15>'

1010

1: (X,Mvr),(MODELS,-,((MODELS,Mvr),(14962,(14962,Mvr),-,-)),-)

Project Parameter in Table

11

Figure 4. Conceptual FCO-IM data model

The recursions in figure 4 may not be very clear on first sight, because they are
indirect:

- Role 8 of object type Telitab is played by Project Parameter in List, which is a
subtype of Project Parameter which is itself partly identified by Telitab.

- Role 11 of object type Telitab is played by Project Parameter Case, which is
partly identified by Project Parameter in Table, which is a subtype of Project
Parameter, which is partly identified by Telitab.

As mentioned, the main purpose of this case study is to build a working relational
database. However, presently there is no support from RDBMS vendors for such
complex structures. Therefore the conceptual model cannot be directly implemented.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 9 of 10

By using a method called nicknaming, recursive and generalized structures can be
transformed algorithmically into another conceptual model without generalization
(and recursion), which can be converted to a relational database schema. This method
involves changes in the verbalizations of the facts. The underlying idea is to give a
nickname (meaningless key or index) to each element in a recursive structure or
generalized object type, so that each can be identified independently. In this case,
each telitab is given a positive integer number (1, 2, 3, etc.) as an index. It is then the
task of the user interface to hide these artificial numbers and to present the real
recursive structure to the user. See [2] and [3] for some notes on this subject.

5. Conclusions and Future Works

Recursion and generalized data structures are encountered many times in practice. For
another example of recursion and generalization in The Dutch Railway Company, see
[2]. As in the Quaestor case, the real nature of the conceptual structure could not be
easily comprehended. In both cases, modeling in FCO-IM immediately gave insight
because this method requires the data modeler to observe the case from a semantic
and elementary point of view.

It seems that the use of inadequate data modeling methods causes many data modelers
to have difficulty in understanding generalized and recursive identification structures
at the type level, even though they can recognize such structures at the instance level.
The Quaestor case study showed this once again because data modelers did not
succeed to grasp the essence of the Quaestor project data, using modeling methods
that do not include generalization and recursion.

Data model patterns is an emerging field of research in the data modeling area. The
idea of finding patterns in data models comes from the idea of reusability in the
information system development area. Data model patterns are found by studying
similarities among existing models and/or by finding the best solution from two, three,
even hundreds of correct data models of a particular problem. This case study shows
that it is also interesting to study whether structure patterns such as generalization and
recursion can be applied.

There are a number of data model patterns researches that give interesting results (see
[4] for example), but it seems that most of these attempts seek patterns from the
perspective of the content (terminology used, the semantics of objects defined and
their relationships, type of area involved, etc.) or in other words: at the instance level.
To use such patterns a designer must find which of these patterns has the same (or
mostly similar) content as the system he/she is modeling. Once such a pattern is found,
the modeling process can presumably be done very quickly. It is more interesting
however, to seek patterns from the point of view of the structure of the patterns
themselves. An instance level approach might not be very useful if the new case
cannot be matched to any existing pattern (or perhaps uses only small portions of
these patterns). The Quaestor case study discussed in this article is an example of this.

Perhaps a meta level of patterns abstracted from existing patterns (and other cases
which are not included in current patterns) can be found. This hypothesis will be
studied further.

A Case Study of Recursive Data Modeling, Fazat Nur Azizah, HAN University page 10 of 10

6. References

[1] Azizah, F.N.: “Development of Database Server for Quaestor Project Data”,

Master Thesis of Study Program Information Systems Development, HAN
University, Arnhem/Nijmegen The Netherlands, 2005

[2] Bakema, G., Zwart, J. P., van der Lek, H.: “Fully Communication Oriented
NIAM”, NIAM-ISDM 1994 Conference, Working Papers, Albuquerque, New
Mexico USA, 1994

[3] Bakema, G., Zwart, J. P., van der Lek, H.: “Fully Communication Oriented
Information Modeling (FCO-IM)”, HAN University, Arnhem/Nijmegen The
Netherlands, 1999

[4] Hay, D.C.,: “Data Model Patterns”, Dorset House Publishing, New York, 1996
[5] Hees, M. Th. Van: “Knowledge-based Computational Model Assembling”,

paper on SCSC (Summer Computer Simulation Conference) 2003,
http://www.qnowledge.nl, access on June 2005

[6] Hofstede A.H.M. ter, “Information Modelling in data intensive domains”,
Radboud University Nijmegen The Netherlands, PhD thesis, 1993.

