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Abstract. We present a general algorithm for determining all intra fact type 

uniqueness constraints in a fact type with n roles. For Fact Oriented Methods of 

information modeling that work with elementary fact types, a top-down ap-

proach is shorter than a bottom-up approach for fact types with more than two 

roles. The algorithm is shorter (in terms of the number of tests to be performed) 

than the one published earlier in our book on FCO-IM. For its most important 

steps, we prove that no shorter algorithm exists. 

1 Introduction 

Several Fact Oriented Modeling (FOM) methods of information modeling (such as 

Fully Communication Oriented Information Modeling (FCO-IM) [1], Object Role 

Modeling (ORM) [4], Predicator Set Modeling (PSM) [6, 9] and their precursors [2, 

8, 10], use the modeling construct of a fact type, which consists of a number of roles, 

with each role played by an object type or label type. Every fact type has at least one 

intra fact type uniqueness constraint (UC) on a number of its roles (possibly on all of 

them): the combination of values in the population of the roles to which the UC ap-

plies must be unique. An intra fact type UC concerns roles in only one fact type, 

whereas an inter fact type UC concerns roles in more than one fact type. 

Everything stated in this paper also applies to the Relational model, if the follow-

ing mapping is used: fact type ↔ table, role ↔ column, UC ↔ superkey [7, section 

2.4; 4, section 4.5], UC on minimum number of roles ↔ candidate key. 

Determining the UCs for all the fact types is an important step in the modeling 

process for all FOM methods [1, section 3.3; 4, chapter 4], not least because the struc-

tures of information models that can be derived automatically from a FOM model 

(such as Entity-Relationship (ER) models, Unified Modeling Language (UML) class 

diagrams, or Relational database schema’s) depend critically upon them. The goal is 

to find the smallest UCs possible, i.e.: find UCs on a minimum number of roles (find 

candidate keys, not superkeys [7, section 2.4; 4, section 4.5]). The only systematic 



procedure to determine UCs (just intra fact type UCs) published to date was given in 

[1, section 3.2.2]. Although that algorithm yields correct results, it can still be im-

proved: here we report a shorter algorithm (in terms of the number of tests to be per-

formed) to find all intra fact type UCs. We will consider the general problem of find-

ing all the smallest UCs in a single fact type with n roles. 

We introduce the problem using a concrete example (as always when working with 

FOMs) in section 2. Section 3 lists the notation we use and a few general properties of 

UCs. Section 4 substantiates the main strategy for the algorithm. The algorithm itself 

is stated and explained in section 5, which also includes an abridged version that is 

easier to use and covers the majority of cases. Technical details and proofs, indicated 

by references starting with ‘C’, can be found in the mathematical compendium. 

2 Concrete Example 

The example below briefly illustrates the relevant concepts and procedures. Figure 1 

shows at the left-hand side a part of the FCO-IM fact type Class Schedule: it has five 

roles, a fact type expression (predicate) F1, three tuples in its example population, and 

two uniqueness constraints (UCs). Object types and/or label types playing the roles 

are not shown. From each tuple, a complete fact stating sentence can be formed by 

filling in all the values from the tuple in the appropriate blanks (indicated by role 

numbers between angle brackets) in the predicate. 

Fig. 1. Fact type Class Schedule with UCs, and how they are determined. 

Fact type Class Schedule concerns the class schedules of a school. A trimester is 

identified by a trimester number (1, 2, 3, or 4) together with a calendar year. Classes 

are identified by the combination of a faculty (I stands for Information Science), a 

school year (1, 2, 3 or 4) and a one-letter class code. So roles 1 and 3 contain com-

pound values, but in the context of determining UCs for fact type Class Schedule, 

these can be considered as atomic. See [1, section 2.11] for a further explanation. 

The right-hand side of figure 1 shows how the existence of a UC is determined [1, 

section 3.2.2]. Tuples 4 and 5 are presented to a domain expert, who declares that they 

can occur together in a valid population. So U0 does not exist: duplicate values in 

roles 1, 2, 3 and 4 are allowed. But the domain expert rejects tuples 6 and 7: two dif-

ferent classes cannot be taught by the same teacher at the same time. So U2 does exist: 

duplicate values in roles 1, 2, 4 and 5 are not allowed. The problem addressed in this 

paper is how to systematically find all UCs on a fact type with n roles with a mini-
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mum of effort on the part of both analyst and domain expert. Since each test requires 

exactly the same effort (create two tuples (analyst) and accept or reject their joint oc-

currence in a valid population (domain expert)), the number of tests to be done is a 

good measure of the length of UC-determining algorithms. 

In FCO-IM, fact types with more than 4 roles are actually very rare: fact types with 

2 roles are most common (≥ 80 %), fact types with 3 roles occur frequently (≤ 20%) , 

fact types with 4 roles occasionally (≤ 1%), and we have only once encountered a fact 

type with 5 roles in practice. Usually combinations of values become clustered as 

complex identifiers of object types, as in the compound values in roles 1 and 3. In a 

large FCO-IM information model, roles 1, 4 and 5 would probably be combined in an 

object type Lesson Period, reducing Class Schedule to a fact type with just three roles. 

Still, minimizing the work needed to determine UCs even for fact types with only 

three roles is relevant in view of their importance. 

3 Notation and properties of UCs 

We use the following notation: 

Uk   UC number k. 

Uk(p;n)  UC number k on p roles in a fact type with n roles (1 ≤ p ≤ n). 

R(Uk)  the collection of roles Uk operates on. 

Pop(R(Uk)) the population of the collection of roles on which Uk operates. 

#R(Uk)  the number of roles in R(Uk). 

#UC(p;n)  the number of UCs on p roles in a FT with n roles (1 ≤ p ≤ n). 

The following properties of uniqueness constraints (UCs) hold: 

P1 If there exists a Uk(p;n), then each tuple in Pop(R(Uk(p;n))) is unique. 

This is just the definition of a UC. 

P2 Suppose there exists a certain Uk(p;n) on R(Uk), with 1 ≤ p < n. 

Then there exist also all UCs Ul(q;n) on R(Ul(q;n)) with p < q ≤ n, 

and R(Uk(p;n)) a subset of R(Ul(q;n)). 

Example: In the fact type 

with six roles shown here, 

U1 (with R(U1)={2, 3, 4}), 

implies the existence of U2, 

U3, U4, and four other UCs 

not shown, but not U5. 

Proof: This follows directly from P1: if every tuple in the population of R(Uk) 

is unique, then certainly every tuple in the population of every set of roles that 

completely contains R(Uk) is also unique. 

P3 Every fact type has at least one UC. 

This is a meta-constraint on FOM models: two identical tuples are forbidden in 

all valid populations of any fact type. Otherwise we would allow redundancy 

by sheer repetition of facts. 

Remark: it is possible to adopt the convention that if there is only one UC on 

all n roles of a fact type, then it is not necessary to explicitly draw it in. For 

practical reasons we prefer not to use this convention. One reason is that we 

can easily visually tell the difference between FTs for which we have already 
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finished determining the UCs, and FTs for which we have not yet done so 

(otherwise absence of evidence gets confused with evidence of absence). 

4 Main strategy 

4.1 Elementary fact types and n-1 rule 

Most FOM methods model elementary facts. Since it is not completely clear what an 

elementary fact exactly is [1, section 2.3; 4, section 3.3; 5], we will use the following 

working definition in this paper: 

A fact type (FT) with n roles is elementary if and only if it cannot be replaced by 

two or more FTs with less than n roles without losing information. Losing informa-

tion means: there exists a population of the original FT with n roles, which cannot be 

reconstructed exactly by joining the populations of the FTs with less than n roles. 

From this follows the well-known n-1 rule [1, section 3.3.1.1; 4: section 4.5]: a FT 

with n roles is not elementary if there is at least one uniqueness constraint (UC) on 

less than n-1 roles. Proof: Suppose there is a fact type FT1 with n roles that has a UC 

on the n-2 roles {1, 2, … n-2}. Then FT1 can be split into two fact types FT1a and 

FT1b with n-1 roles: FT1a has roles {1, 2, …, n-2, n-1}, and FT1b has roles {1, 2, …, 

n-2, n}, and both have a UC on roles {1, 2, …, n-2}. Joining the populations of FT1a 

and FT1b will always exactly regenerate the population of FT1, because roles n-1 and 

n are both functionally dependent on roles {1, 2, … n-2}. Finally: If FT1 has a UC on 

less than n-2 roles, then it also has a UC on n-2 roles (property P2 in section 3). 

4.2 Top-down versus bottom-up 

We can determine all UCs on a fact type (FT) either bottom-up or top-down. 

Bottom-up: first test whether there are any UCs on 1 role, then on 2 roles, and so 

on. If none are found on 1, 2, ..., n-1 roles, then there must be one UC on all n roles 

(otherwise we would have exactly the same fact more than once in the population). 

Top-down: first test whether there are any UCs on n-1 roles. If not, then there must 

be one UC on all n roles. If there is at least one UC on n-1 roles, then we must check 

if there are any UCs on n-2 roles (because of property P2 in section 3). If so, then we 

must check for UCs on n-3 roles, and so on until we find no smaller UCs on n-p roles, 

for some p with 1 < p < n. 

Which approach is more efficient? The bottom-up approach requires at least n tests 

(all possible UCs on 1 role, from C2e with m=1, and C1a), and at most 2
n
-2 tests 

(from C2d, C2c, C1b and the fact we don’t have to test UCs on 0 roles or on n roles), 

whereas the top-down approach also requires at least n tests (all possible UCs on n-1 

roles, from C2e with m=n-1, and C1a), and at most 2
n
-2 tests (same reason as for the 

bottom-up approach). However, FCO-IM works with elementary FTs, and practice 

shows that even inexperienced modelers will only very rarely (≤ 1%) model a non-

elementary FT by mistake. It is therefore unlikely that any UC on less that n-1 roles 

exists. In the ideal situation (if we know there are no non-elementary fact types) the 



following number of tests have to be carried out for a FT with n roles: 

n 2 3 4 5 6 … 

Top-down (n) 2 3 4 5 6 … 

Bottom-up (2
n
-2) 2 6 14 30 62 … 

The top-down approach is clearly much more efficient for fact types with 3 or more 

roles, and equally efficient for fact types with 2 roles. So we will consider only the 

top-down approach further. We can estimate that even in the non-ideal situation (in 

which we will have to check for non-elementariness), the average number of tests for 

n=3 will be ≈ 3.5 for top-down versus ≈ 5.5 for bottom-up. 

5 Algorithms 

5.1 General algorithm for finding all intra fact type UCs in a FT with n roles. 

In the algorithm given below, ‘test a UC’ means: determine whether a UC exists by 

presenting two tuples with suitably chosen values to a domain expert, as the right side 

of figure 1 shows. The algorithm is given in pseudo code. Details are explained below 

the algorithm itself. 

 

1 n = 1. 

Add a UC on the single role in the fact type. 

2 n > 1. 

a Test all the n UCs on n-1 roles. Suppose m are found (0 ≤ m ≤ n). Add all 

found UCs to the fact type. 

b IF m = 0 THEN there is a UC on all n roles. Add it to the fact type. 

c Set p=1. 

d IF m < p+1 OR p = n-1 

i THEN the analysis is complete. 

ii ELSE 

(1) FOR all ½m(m-1) pairs of UCs Ui, Uj, 1≤i<j≤m, on n-p roles found do: 

(a) IF #(R(Ui)∩R(Uj)) = n-(p+1) 

(i) THEN IF the same overlap has not yet been tested 

THEN test UC Uk on R(Ui)∩R(Uj) 

ENDIF. 

ENDIF 

ENDFOR 

(2) FOR all UCs found in 2dii(1) do: 

(a) Replace Ui and Uj by Uk (this may concern several pairs Ui, Uj with 

the same overlap for one Uk). 

ENDFOR 

(3) Set m equal to the number of UCs found in step 2dii(1). 

(4) Increase p by 1 (set p = p+1). 

(5) GO TO 2d. 

ENDIF 

 



Explanation: 

Step 1: Given property P3 in section 3, a UC on the single role is the only possibil-

ity. See also the remark made in property P3. 

Steps 2a-b: All n UCs on n-1 roles must be tested. If none is found, then there is 

only one UC on all n roles (from property P3 and C7b). Otherwise we need to check 

if there are any UCs on less than n-1 roles. 

Step 2c: Sets the initial value for p, which increases by 1 in each recursive step. In 

each recursive step, UCs on n-(p+1) roles are determined. 

Step 2d: Criteria to stop the recursion. The algorithm terminates if p=n-1, because 

there can be no UCs on n-(n-1+1)=0 roles. It also stops if less than p+1 UCs on n-p 

roles are found, because no UCs on less than n-p roles can then exist (proof: see C7e). 

Step 2dii(1): A UC on n-(p+1) roles can only occur if there are two UCs on n-p 

roles with an overlap of n-(p+1) roles (proof: see C8c). Therefore all pairs of UCs on 

n-p roles must be considered. 

Step 2dii(1)(a): A test is carried out only if the overlap in the pair is n-(p+1). For 

p=1, all UCs have an overlap of n-2 roles, but for p>1 this is not necessarily so. 

Step 2dii(1)(a)(i): For p=1, no two pairs have the same overlap, but for p>1 several 

pairs can have the same overlap. In such cases only one test is to be done for all pairs 

with the same overlap. Perhaps some criteria could be given to find collections of 

pairs with the same overlap easily, which would further shorten the algorithm, but we 

have not found them. 

Step 2dii(2): Since smaller UCs imply larger UCs, we replace the larger by the 

smaller. Each UC on n-(p+1) roles replaces all UCs on n-p roles that have these n-

(p+1) roles as a subset. If more than one pair considered in step 2dii(1) have the same 

overlap, then more than two UCs on n-p roles are replaced. 

Steps 2dii(3)-(5): m and p are updated, and the next recursive step to find yet 

smaller UCs is taken. 

5.2 Shortness of the algorithm. 

In step 2a, all n UCs on n-1 roles are tested. This step obviously cannot be shortened, 

since each UC can either be present or not. 

In step 2dii(1) for p=1, the overlap in all pairs of UCs found on n-1 roles must be 

tested. This calls for ½m(m-1) = m-over-2 tests. We show in C7e: if #UC(n-1;n) = m, 

then 0 ≤ #UC(n-2;n) ≤ m-over-2, and m is the smallest integer for which this is true. 

So once more the number of tests to be carried out is equal to the number of UCs pos-

sible, and each UC can either be present or not. For these two steps the algorithm is 

therefore the shortest possible. However, we have not proved the same for p > 1. We 

expect that in over 90% of all cases in practice the algorithm will stop after these two 

steps, so it is quite efficient. 

The algorithm is shorter (in terms of number of tests to be done) than the one pre-

sented in [1, section 3.2.2], which calls for more tests because it has less strict termi-

nation conditions (for instance, it calls for checks even if only one UC on n-1 roles is 

found, but its recursion is formulated in a simpler way). Even so it will give the same 

results as the algorithm presented here, which takes less tests. 



5.3 Abridged algorithm for finding intra-fact type UCs in a FT with n roles. 

The general algorithm given above finds all the smallest UCs (candidate keys) in a 

fact type with n roles. Since FOM methods usually work with elementary fact types, 

the algorithm will terminate very quickly. Below, we give an abridged version that is 

easier to use and covers over 99% of the cases encountered in FCO-IM modeling. It is 

phrased less abstractly, and stops as soon as a violation of the n-1 rule is found, indi-

cating that the general algorithm can be followed further if desired, and what the con-

sequences are if it is not. 

 

1 Fact type with 1 role. 

Add a UC on the single role in the fact type. 

2 Fact type with more than one role (n > 1). 

Test all the n UCs on n-1 roles. 

a No UC on n-1 roles is found. Then there is one UC on all the n roles. 

b At least one UC on n-1 roles is found. 

i The fact type has 2 roles. The analysis is complete. 

ii The fact type has 3 or more roles. 

(1) Only one UC on n-1 roles is found. The analysis is complete. 

(2) More than one UC on n-1 roles is found, say m, with 2 ≤ m ≤ n. 

For each of the ½m(m-1) pairs of UCs on n-1 roles, test the UC on 

the n-2 roles in the overlap of the two UCs in the pair. 

(a) No UC on n-2 roles is found. Then all the UCs on n-1 roles are cor-

rect and the analysis is complete. 

(b) At least one UC on n-2 roles does exist. Then each UC on n-2 roles 

replaces the pair of UCs on n-1 roles from which it was found. The 

fact type is not elementary and should be remodeled by splitting it 

into two or more smaller fact types. For fact types with 3 roles, the 

analysis is complete, and splitting should be performed. For fact 

types with more than three roles: if the UC-analysis is not continued 

from here, then there is a small risk of missing UCs on the fact type 

with n roles that will become inter fact type UCs after splitting. The 

general algorithm can be followed further if desired, If not, split the 

fact type, and do the UC analysis for the new fact types. 

6 Conclusion 

The algorithms presented in this paper minimize the work to be done when deter-

mining all the smallest intra fact type uniqueness constraints (UCs) in elementary fact 

types (i.e.: find all the ‘candidate keys’ of elementary fact types). This is important in 

practice, because the structure of any logical data model (in ERM, UML, Relational 

or other technique), which nowadays can be derived automatically from the concep-

tual elementary model, depends critically on these UCs. Apart from saving time and 

effort, the fewer tests there are to be carried out, the smaller the chances are of mak-

ing mistakes, which will result in faulty structures. 



Mathematical compendium 

C1 Binomial coefficients for integers n, m: definitions. 

 

 

 

 

 

C2 Well-known properties of binomial coefficients. 

 

 

 

d): n-over-m is the number of different subsets with m elements that can be 

formed from a set of n elements. 

e): n-over-m is the number of possible UCs on m roles in a FT with n roles. 

Proof: From C2d, with roles as elements and each UC on a different subset. 

 

C3 Smallest integer greater than. 

 

 

 

C4  Relationships between #UC(n-p;n), #UC(n-p+1;n) and #UC(n-1;n). 

 

 

 

Proof: with p roles not under the given UC, the number of ways in which the 

given UC can be extended to cover n-1 roles is the number of ways to choose 

p-1 roles out of p roles (C2d). 

 

 

 

Proof: with p roles not under the given UC, the number of ways in which the 

given UC can be extended to cover p+1 roles is the number of ways to 

choose 1 role out of p roles (C2d). 

 

 

Proof: From the negation of C4a with its ‘=’-signs replaced by ‘≥’-signs. 

 

C5 Relationships between #UC(n-q;n) and #UC(n-p;n) roles for p < q 

 

 

Proof: Follows directly from property P2. 

 

 

Proof: From the negation of C5a, with ‘< 1’ replaced by ‘= 0’. 
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Proof: Follows directly from C4b. 

 

 

Proof: From the negation of C5c, with ‘< 1’ replaced by ‘= 0’. 

 

 

Proof: From C5d and C5b. 

 

C6 Relationships between #UC(n-(p+1);n) and #UC(n-p;n): 

a): If there is a UC Uk,o on n-(p+1) roles, then there are p+1 UCs Uk,1, …, Uk,p+1 

on n-p roles, for 0 ≤ p ≤ n-2. For each Uk,i: R(Uk,0) ∩ R(Uk,i) = R(Uk,0). 

Proof: Follows directly from C4b and P2. 

b): If p > 0 then for each pair Uk,i, Uk,j from C6a: R(Uk,i) ∩ R(Uk,j) = R(Uk,0). 

Proof: From C6a with p > 0, and the fact that Uk,i ≠ Uk,j for i ≠ j. 

c): If there are 2 UCs Uk,i and Uk,j on n-p roles and #(R(Uk,i)∩R(Uk,j)) < n-(p+1), 

then there is no UC on n-(p+1) roles from which they both follow. 

Proof: From the negation of C6b, and if #(R(Uk,i)∩R(Uk,j)) ≠ R(Uk,0) then it 

must be smaller than R(Uk,0) because Uk,i ≠ Uk,j for i ≠ j. 

 

C7 Bounds on #UC(n-p;n) given #UC(n-1;n) and vice versa. 

Proof: From C4a, and choosing the UCs on n-p roles so that as many as pos-

sible of the remaining p roles get covered by the UCs on n-1 roles. 

 

 

 

Proof: One UC on n-p roles generates p UCs on n-1 roles (C4a). Suppose we 

have m UCs on n-1 roles, with p<m<n. What is the greatest number of UCs 

on n-p roles that can generate these m UCs on n-1 roles? This is equivalent to 

the question how many different subsets of p UCs on n-1 roles can be formed 

from the given set of m UCs, because each subset corresponds to one UC on 

n-p roles, and no two UCs on n-p roles can give the same subset. So (from 

C2d): at least m-over-p UCs on p roles are needed to generate at least m+1 

UCs on n-1 roles. The inequality now follows by replacing m by m-1 in the 

sentence above. 

 

 

 

 

 

Proof: From C7b, C7c, and C7c again with m replaced by m+1. 
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See C3 for the definition of the brackets ‘┌’ and ‘┐’used above. 

Proof: From C7c with p=2, expanding the binomial coefficients to obtain the 

quadratic inequality (m-1)(m-2)≤2(k-1)≤m(m-1) and solving for m. 

 

 

 

Proof: Left inequality: obviously the existence of a UC on n-1 roles does not 

imply the existence of any UC on less than n-1 roles. 

Right inequality: For m = 1 this follows directly from C4c with p = 2, and 

from C1c. For m > 1: observe that ½(1+√(1+8(k-1))) is the positive root of 

the equation m
2
-m-2(k-1)=0. From C7d: m > ½(1+√(1+8(k-1))), which im-

plies m
2
-m-2(k-1) > 0. So ½m(m-1) ≥ k. From C2a the inequality follows. 
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